CAVITATION STREAMLINE FLOW OF LAMINA IN
TRANSVERSE GRAVITATIONAL FIELD

L. G. Guzevskii UDC 532.6+532.528

The problem of cavitation streamline flow located on the linear base of a lamina in a gravity
solution current is solved by the systems of Ryabushinskii and Zhukovskii—Roshko. The
method of fragment-continuum approximation of the boundary condition at the free boundary
was used, in which this condition is exactly satisfied at a finite number of points. In this
way the original problem comes down to a solution of a system of nonlinear equations whose
solvability can be shown by the method of V., N, Monakhov [1]. The main consideration in the
present work was given to a numerical solution of this system of equations on a computer.
The problem is similar to the type for large Froude numbers, when the effect of weight on
the flow is small, studied in [2-5]. In [6, 7] the flow problems were solved by the method of
finite differences, The approximations of the boundary condition at the free boundary used
earlier are based on the use of the smallness of these or other characteristics of flow.
Thus, for example, the linearization of Levi—Chivit [8] is rightly used in the assumption of
smallness of the change in the modulus and angle of inclination of the velocity at the free
flow line; a stronger linearization is based on the requirement of smallness of additional
velocities caused by an obstacle in comparison with the velocity of the undisturbed current
[9]. In the given work the problems studied lead to a range of cavitation and Froude num-
bers when the gravitational force exerts a considerable effect on the main characteristics

of the flow. As an example of one of the possible applications of the calculation, the solu-
tion of the problem of choice of the form of a body of zero buoyancy with a zone of constant
pressure is given,

Diagrams of the currents under examination are presented in Fig. 1. For the characteristic sizes of
the given sections the flow regions have a length [ of the lamina DA and an angle a7 which it forms with
the infinite horizontal base CD. In Ryabushingkii's system the cavity is assumed to be symmetrical with
respect to some vertical axis BC, which allows one to confine the study to one half of the flow region.

We select a conformal flow region in the physical plane z = x + iy on the interior of the unit semi-
circle

g < 1, Imf >0

so that the free surface AB corresponded to the arc of the circle { = elS and the remaining part of the
boundary has an effective diameter { =t. In this way we locate the infinitely distant point C in accordance
with the origin of the lamina coordinate ¢ , while we determine point D by means of t; (Fig. 2).

The derived representation of the semicircle in the region of the complex potential w(z) = ¢(x, y) +
i¥ &, y)

D g, A=00+0
dg Co.s(sn) 1)

where K is a real constant, ¢, is the velocity at point A, and A is equal to 0 and 1 for the systems of
Ryabushinskii and Zhukovskii—Roshko, respectively.
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| We look for a complex velocity dw/dz = gexp ¢i6) in the
v 5 ¥ s 4 form

-2 4 : . 21 —1—@_;“ §~t1¢
] ) ma = (1-—:@) eM® (2)

Then to determine the analytical function M({) we arrive
at the following boundary-value problem:

75 , A
ReM(e) =i, se(0,a); ImM(@)=0, te[—11]
iSm [£4
’ ! b ’ Extending M (£ } using the symmetry principle to the whole
d ‘ 7 Az unit circle | £ ] = 1 and taking into account the parity q(s), we
Fig. 2 obtain, from the given function M (£ ) by the Schwartz equation,
1 2(s) 12
M (@)= ?c—gln ge 1~~2(coss+ L2 ds (3)
The dependence z = z(£) is found from Eqgs. (1) and (2)
z i i— i+ *
2(t) = Ke S ( Co‘—giis‘:x)——g) (2" th\ M &) gt 4)
1

The pressure p at the boundary line of the flow is determined from the Bernoulli integral

PY o2 2
p=pst—-—"0, pe=p,—08y

where p, is the pressure in the undisturbed current at the level of point A, q, is the current flow velocity,
g is the accelerating force of gravity, and p is the fluid density, From here we seek in the stabilizing force
of the pressure p, at the boundary AB a function q(s) which should satisfy the condition

1, Fr=

() __ 2 y (s) ( _Px—Py g 9o )
1 = 1lzpqm2 —qmz 4 V.E—?—/-l; {5)

e TAFOFE g
In this equation o is the cavitation number and Fr is the Froude number determined from the quantity
y, = Isinan. We choose the dependence q = q(s) so that (5) is satisfied at a finite number of points of the
free boundary,
is
Let ) = oK k=1,...,m) be images of some points zy = xj + iy of the free boundary. In accord~

ance with (5) the relative velocity qix/q, at the points z) is determined only through the physical parameters
¢, Fr, and the dimension Ik = y./y,

q o,
The rates of flow q(s) at each of the intervals [sy, Si4q] We assign according to the formula

‘ 8 -

q(s) ( ‘1;;) k41 (qk+1 By B COS$ — COS 8, ©0S § — oS 3,

g0 %y 90 ’ #17 Cos Sy — COS 5,1’ k= Coss S — 008 8 n
(s s <Sk+1)

Then q(si) = g and in the case where g4y < g k=0, ..., m), d@) is a monotonically decreasing
function of the parameter s € [0,7].

Substituting Eq. (7) in (3) after evaluating the integrals entering into the given function M (¢ ), we obtain

1S 1 g e
ML) = k3 kgla COSS, — 008 55,y | 20 (Sk1 = 54} 1n 4,
ey % AT (€ — Ryt — ey
44 [(T — ¢os s,m) 111;1—0 + (cos Se——gp- ) In ;:1] In 4z eis’fg)) (C __eeiskﬂc) } (8)
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ot | T The condition (5) at points 2y, . . ., Zy, Zm Of the free
P A I T boundary in accordance with (6) lead to the m + 1 equation
! 1:"!'5 ! Z/’E g 8
1L R__ : . L ds
), 7 i 77 ﬁ?_i“F-_——rz(i-i-c)sinan gqosms/2(2coss/2) sma(s)m
0
Fig. 3 1 a
A=A+t M—ut -t
X [tS 10-8 3+ (t —1 ) eM® dt] (9)
g From the condition for the velocity of an iriflowing current
2 % PP Fr=447 ’
Fre=co! = dw
i z yin 9= ,§=0
0 20 [ 7
Fig. 4 it follows that one may express t; through the other parameters
20 _ 1
P dtoeNo
200 p Having now arbitrarily fixed the form of the parameter sk k =
;’ ’ /+%’ 1, ..., m), we obtain from Eq. (9) the system of m + 1 equations
’ 0 for determination of the magnitude of q./¢y k=1, ..., m+ 1).
150
L In order to solve the system of equations (9) it is necessary
B that the given characteristics of flow ¢ and Fr satisfy the condition
0 \\ 5 | \
|\ [reee ] s Fr*>2y, 14, (10)
I W L iy ——
7 which arises during proof of the existence of a solution of the given
[Fr=ce T p— system by V. N. Monakhov's method [1]. On the other hand, the in-
; a=05i|5=05 |, equality (10) is satisfied for those cavitation flows in which the static
5 7 15 Fr pressure at the free boundary is greater than the pressure p, in the
p 0
Fig. 5 cavity

Px =P, — PEY(s) > Po

In accordance with Eq, (5) this implies that the velocity at the free flow lines is greater than the un-
disturbed current velocity.

The unknown parameters gi/q, are determined by integration from (9). As a result of the specifics
of the given problem two methods of successive approximations are proposed,

In accordance with the first method a solution is first found for the problem of satisfying the
Bernoulli integral at two points of the free boundary A and B. This solution allows one to find those values
of the parameters sy k=1, ..., m), which correspond to points of the free boundary obtained, with ordi-
nates yi = kyb(°) /(@m + 1), where yb("j is a known ordinate of the point B, The null approximation for solu-
tion of the original system (9) is determined by the equation '

o 2 kv ]‘/z *

LTSN [ S A 1 =1,...,m4
e~ —aremerTw o

and further approximations are sought by the usual iterational scheme. At each step of the iterational pro-
cess the values of parameters sy chosen earlier are written unchanged. In the indicated method the process
stops when the Froude number is close to the minimum Fr_ = 2yb/o Yo

In this interval of Froude numbers the second method is applied, in accordance with which additional
iterations are carried out with respect to Fr. The solution of system (9) obtained is taken as the initial ap-
proximation to the solution of the given system for smaller Froude numbers, etc.

If parameters qi/ g k=1, ..., m+ 1) are found satisfying the system of equations (9), then the
flow is determined by Egs. (1), (2), (4), and (8). The condition of stability of pressure in this case will be
satisfied at m + 2 points of the current line AB, At the remaining points of this boundary the departure of
the observed pressure distribution from the stable pressure p, is characterized by the magnitude
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r(s)=1_ﬁ=(1+%)[1—‘ﬂﬁ]~—%m

Determining for each of these intervals [sg, sgu], k=0, . . ., m the points of the extremum 7 (s),
one may then.find a minimum value 7, of the function 7 (s) for all the intervals 0 = s = 7. The required
smallness of the quantity 7 . is achieved at the expense of an increase in the number of points of the free
boundary at which the boundary condition (5) is satisfied.

The results of calculations of the cavitation streamline flow of a lamina by Ryabushinskii's system
for o = 0.3 are presented in Figs. 3-5. In the solution of the problem the condition of pressure wniformity
(5) for m =19 is satisfied in all cases with an error 7, not exceeding 0.1%.

A comparison of the form of the free boundary for the flow of a weightless and of a heavy fluid with
small Froude numbers and at equal cavitation numbers for two values of the angle of inclination of the
lamina o = %, % is presented in Figs. 3 and 4, respectively. The broken lines in these graphs mark the
midsection of the cavity. The fact should be kept in mind that in the central part of the cavity the free flow
line is somewhat higher for a weightless than for a heavy fluid.

The nature of the dependence of cavity size on the Froude number for a lamina normal for an inflow-
ing current is illustrated in the graph of Fig. 5. To a considerable degree the effect of weight (floating of
the cavity and an increase in its length) appears at small Froude numbers. It is seen from the graph that
as Fr approaches Fr, ~ 6.15 the length of the cavity increases considerably, while its width @maximum
transverse size) is limited below some fixed size.

Analogous calculations were made for the case of cavitation streamline flow of a lamina at the lower
half-surface. Under the same conditions the length and width of the cavity is greater at the lower half-
surface than at the upper.

Of great interest is the case where the net lifting force produced on the body of the cavity on the part
of the liquid is equal to the weight of its displaced fluid, The method of formation of this type of flow was
worked out by B, G. Novikov.

Suppose a solution is found for the problem of cavitation streamline flow of a lamina by Ryabushinskii's
system at the upper (lower) half-surface. The condition ¥ = 0 at the boundary line of the flow allows one to
extend the function w using the symmetry principle through the horizontal base y = 0 into the lower (upper)
half-surface, Then the flow, at all surface under investigation, will be symmetrical and, consequently, non-
circulating. Since at the points P (x, y) and P (x, —y), lying on the free boundary and on its mirror image
relative to the direction y = 0, the velocities are equal, it follows from the Bernoulli integral that the pres-

© sures at the symmetrical points differ by the amount 2pgy. Hence the resultant lifting force produced on
the part of the fluid on the partially cavitated body will be equal to the ejecting Archimedes force.
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